42 research outputs found

    Probabilistic models for structured sparsity

    Get PDF

    Bayesian leave-one-out cross-validation for large data

    Full text link
    Model inference, such as model comparison, model checking, and model selection, is an important part of model development. Leave-one-out cross-validation (LOO) is a general approach for assessing the generalizability of a model, but unfortunately, LOO does not scale well to large datasets. We propose a combination of using approximate inference techniques and probability-proportional-to-size-sampling (PPS) for fast LOO model evaluation for large datasets. We provide both theoretical and empirical results showing good properties for large data.Comment: Accepted to ICML 2019. This version is the submitted pape

    Polygonizer: An auto-regressive building delineator

    Full text link
    In geospatial planning, it is often essential to represent objects in a vectorized format, as this format easily translates to downstream tasks such as web development, graphics, or design. While these problems are frequently addressed using semantic segmentation, which requires additional post-processing to vectorize objects in a non-trivial way, we present an Image-to-Sequence model that allows for direct shape inference and is ready for vector-based workflows out of the box. We demonstrate the model's performance in various ways, including perturbations to the image input that correspond to variations or artifacts commonly encountered in remote sensing applications. Our model outperforms prior works when using ground truth bounding boxes (one object per image), achieving the lowest maximum tangent angle error.Comment: ICLR 2023 Workshop on Machine Learning in Remote Sensin

    Uncertainty-aware Sensitivity Analysis Using RĂ©nyi Divergences

    Get PDF
    Publisher Copyright: © 2021 37th Conference on Uncertainty in Artificial Intelligence, UAI 2021. All Rights Reserved.For nonlinear supervised learning models, assessing the importance of predictor variables or their interactions is not straightforward because importance can vary in the domain of the variables. Importance can be assessed locally with sensitivity analysis using general methods that rely on the model's predictions or their derivatives. In this work, we extend derivative based sensitivity analysis to a Bayesian setting by differentiating the Rényi divergence of a model's predictive distribution. By utilising the predictive distribution instead of a point prediction, the model uncertainty is taken into account in a principled way. Our empirical results on simulated and real data sets demonstrate accurate and reliable identification of important variables and interaction effects compared to alternative methods.Peer reviewe

    EEG source imaging assists decoding in a face recognition task

    Full text link
    EEG based brain state decoding has numerous applications. State of the art decoding is based on processing of the multivariate sensor space signal, however evidence is mounting that EEG source reconstruction can assist decoding. EEG source imaging leads to high-dimensional representations and rather strong a priori information must be invoked. Recent work by Edelman et al. (2016) has demonstrated that introduction of a spatially focal source space representation can improve decoding of motor imagery. In this work we explore the generality of Edelman et al. hypothesis by considering decoding of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source imaging does not lead to an improved decoding. We design a distributed pipeline in which the classifier has access to brain wide features which in turn does lead to a 15% reduction in the error rate using source space features. Hence, our work presents supporting evidence for the hypothesis that source imaging improves decoding

    Leave-One-Out Cross-Validation for Bayesian Model Comparison in Large Data

    Full text link
    Recently, new methods for model assessment, based on subsampling and posterior approximations, have been proposed for scaling leave-one-out cross-validation (LOO) to large datasets. Although these methods work well for estimating predictive performance for individual models, they are less powerful in model comparison. We propose an efficient method for estimating differences in predictive performance by combining fast approximate LOO surrogates with exact LOO subsampling using the difference estimator and supply proofs with regards to scaling characteristics. The resulting approach can be orders of magnitude more efficient than previous approaches, as well as being better suited to model comparison

    Bayesian Inference for Structured Spike and Slab Priors

    Get PDF
    corecore